3.150 \(\int \frac {\csc ^4(e+f x)}{(a+b \tan ^2(e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=146 \[ -\frac {8 b (a-2 b) \tan (e+f x)}{3 a^4 f \sqrt {a+b \tan ^2(e+f x)}}-\frac {4 b (a-2 b) \tan (e+f x)}{3 a^3 f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {(a-2 b) \cot (e+f x)}{a^2 f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {\cot ^3(e+f x)}{3 a f \left (a+b \tan ^2(e+f x)\right )^{3/2}} \]

[Out]

-8/3*(a-2*b)*b*tan(f*x+e)/a^4/f/(a+b*tan(f*x+e)^2)^(1/2)-(a-2*b)*cot(f*x+e)/a^2/f/(a+b*tan(f*x+e)^2)^(3/2)-1/3
*cot(f*x+e)^3/a/f/(a+b*tan(f*x+e)^2)^(3/2)-4/3*(a-2*b)*b*tan(f*x+e)/a^3/f/(a+b*tan(f*x+e)^2)^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 146, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3663, 453, 271, 192, 191} \[ -\frac {8 b (a-2 b) \tan (e+f x)}{3 a^4 f \sqrt {a+b \tan ^2(e+f x)}}-\frac {4 b (a-2 b) \tan (e+f x)}{3 a^3 f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {(a-2 b) \cot (e+f x)}{a^2 f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {\cot ^3(e+f x)}{3 a f \left (a+b \tan ^2(e+f x)\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^4/(a + b*Tan[e + f*x]^2)^(5/2),x]

[Out]

-(((a - 2*b)*Cot[e + f*x])/(a^2*f*(a + b*Tan[e + f*x]^2)^(3/2))) - Cot[e + f*x]^3/(3*a*f*(a + b*Tan[e + f*x]^2
)^(3/2)) - (4*(a - 2*b)*b*Tan[e + f*x])/(3*a^3*f*(a + b*Tan[e + f*x]^2)^(3/2)) - (8*(a - 2*b)*b*Tan[e + f*x])/
(3*a^4*f*Sqrt[a + b*Tan[e + f*x]^2])

Rule 191

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^(p + 1))/a, x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 192

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, n, p}, x] && ILtQ[Simplify[1/n + p + 1
], 0] && NeQ[p, -1]

Rule 271

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x^(m + 1)*(a + b*x^n)^(p + 1))/(a*(m + 1)), x]
 - Dist[(b*(m + n*(p + 1) + 1))/(a*(m + 1)), Int[x^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, m, n, p}, x]
&& ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[m, -1]

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 3663

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff^(m + 1))/f, Subst[Int[(x^m*(a + b*(ff*x)^n)^p)/(c^2 + ff^2*x^2
)^(m/2 + 1), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2]

Rubi steps

\begin {align*} \int \frac {\csc ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {1+x^2}{x^4 \left (a+b x^2\right )^{5/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac {\cot ^3(e+f x)}{3 a f \left (a+b \tan ^2(e+f x)\right )^{3/2}}+\frac {(a-2 b) \operatorname {Subst}\left (\int \frac {1}{x^2 \left (a+b x^2\right )^{5/2}} \, dx,x,\tan (e+f x)\right )}{a f}\\ &=-\frac {(a-2 b) \cot (e+f x)}{a^2 f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {\cot ^3(e+f x)}{3 a f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {(4 (a-2 b) b) \operatorname {Subst}\left (\int \frac {1}{\left (a+b x^2\right )^{5/2}} \, dx,x,\tan (e+f x)\right )}{a^2 f}\\ &=-\frac {(a-2 b) \cot (e+f x)}{a^2 f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {\cot ^3(e+f x)}{3 a f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {4 (a-2 b) b \tan (e+f x)}{3 a^3 f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {(8 (a-2 b) b) \operatorname {Subst}\left (\int \frac {1}{\left (a+b x^2\right )^{3/2}} \, dx,x,\tan (e+f x)\right )}{3 a^3 f}\\ &=-\frac {(a-2 b) \cot (e+f x)}{a^2 f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {\cot ^3(e+f x)}{3 a f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {4 (a-2 b) b \tan (e+f x)}{3 a^3 f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {8 (a-2 b) b \tan (e+f x)}{3 a^4 f \sqrt {a+b \tan ^2(e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.17, size = 140, normalized size = 0.96 \[ \frac {\sqrt {\sec ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)} \left (\frac {2 b \sin (2 (e+f x)) \left (\left (-3 a^2+7 a b-4 b^2\right ) \cos (2 (e+f x))-3 a^2+2 a b+4 b^2\right )}{((a-b) \cos (2 (e+f x))+a+b)^2}-\cot (e+f x) \left (a \csc ^2(e+f x)+2 a-8 b\right )\right )}{3 \sqrt {2} a^4 f} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^4/(a + b*Tan[e + f*x]^2)^(5/2),x]

[Out]

(Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[e + f*x]^2]*(-(Cot[e + f*x]*(2*a - 8*b + a*Csc[e + f*x]^2)) + (2*
b*(-3*a^2 + 2*a*b + 4*b^2 + (-3*a^2 + 7*a*b - 4*b^2)*Cos[2*(e + f*x)])*Sin[2*(e + f*x)])/(a + b + (a - b)*Cos[
2*(e + f*x)])^2))/(3*Sqrt[2]*a^4*f)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^4/(a+b*tan(f*x+e)^2)^(5/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\csc \left (f x + e\right )^{4}}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^4/(a+b*tan(f*x+e)^2)^(5/2),x, algorithm="giac")

[Out]

integrate(csc(f*x + e)^4/(b*tan(f*x + e)^2 + a)^(5/2), x)

________________________________________________________________________________________

maple [A]  time = 1.31, size = 245, normalized size = 1.68 \[ \frac {\left (2 \left (\cos ^{6}\left (f x +e \right )\right ) a^{3}-18 \left (\cos ^{6}\left (f x +e \right )\right ) a^{2} b +32 \left (\cos ^{6}\left (f x +e \right )\right ) a \,b^{2}-16 \left (\cos ^{6}\left (f x +e \right )\right ) b^{3}-3 \left (\cos ^{4}\left (f x +e \right )\right ) a^{3}+30 \left (\cos ^{4}\left (f x +e \right )\right ) a^{2} b -72 \left (\cos ^{4}\left (f x +e \right )\right ) a \,b^{2}+48 \left (\cos ^{4}\left (f x +e \right )\right ) b^{3}-12 a^{2} \left (\cos ^{2}\left (f x +e \right )\right ) b +48 \left (\cos ^{2}\left (f x +e \right )\right ) a \,b^{2}-48 \left (\cos ^{2}\left (f x +e \right )\right ) b^{3}-8 b^{2} a +16 b^{3}\right ) \left (\cos ^{5}\left (f x +e \right )\right ) \left (\frac {a \left (\cos ^{2}\left (f x +e \right )\right )-\left (\cos ^{2}\left (f x +e \right )\right ) b +b}{\cos \left (f x +e \right )^{2}}\right )^{\frac {5}{2}}}{3 f \left (a \left (\cos ^{2}\left (f x +e \right )\right )-\left (\cos ^{2}\left (f x +e \right )\right ) b +b \right )^{4} \sin \left (f x +e \right )^{3} a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^4/(a+b*tan(f*x+e)^2)^(5/2),x)

[Out]

1/3/f/(a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)^4*(2*cos(f*x+e)^6*a^3-18*cos(f*x+e)^6*a^2*b+32*cos(f*x+e)^6*a*b^2-16*c
os(f*x+e)^6*b^3-3*cos(f*x+e)^4*a^3+30*cos(f*x+e)^4*a^2*b-72*cos(f*x+e)^4*a*b^2+48*cos(f*x+e)^4*b^3-12*a^2*cos(
f*x+e)^2*b+48*cos(f*x+e)^2*a*b^2-48*cos(f*x+e)^2*b^3-8*b^2*a+16*b^3)*cos(f*x+e)^5*((a*cos(f*x+e)^2-cos(f*x+e)^
2*b+b)/cos(f*x+e)^2)^(5/2)/sin(f*x+e)^3/a^4

________________________________________________________________________________________

maxima [A]  time = 0.78, size = 195, normalized size = 1.34 \[ -\frac {\frac {8 \, b \tan \left (f x + e\right )}{\sqrt {b \tan \left (f x + e\right )^{2} + a} a^{3}} + \frac {4 \, b \tan \left (f x + e\right )}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} a^{2}} - \frac {16 \, b^{2} \tan \left (f x + e\right )}{\sqrt {b \tan \left (f x + e\right )^{2} + a} a^{4}} - \frac {8 \, b^{2} \tan \left (f x + e\right )}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} a^{3}} + \frac {3}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} a \tan \left (f x + e\right )} - \frac {6 \, b}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} a^{2} \tan \left (f x + e\right )} + \frac {1}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} a \tan \left (f x + e\right )^{3}}}{3 \, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^4/(a+b*tan(f*x+e)^2)^(5/2),x, algorithm="maxima")

[Out]

-1/3*(8*b*tan(f*x + e)/(sqrt(b*tan(f*x + e)^2 + a)*a^3) + 4*b*tan(f*x + e)/((b*tan(f*x + e)^2 + a)^(3/2)*a^2)
- 16*b^2*tan(f*x + e)/(sqrt(b*tan(f*x + e)^2 + a)*a^4) - 8*b^2*tan(f*x + e)/((b*tan(f*x + e)^2 + a)^(3/2)*a^3)
 + 3/((b*tan(f*x + e)^2 + a)^(3/2)*a*tan(f*x + e)) - 6*b/((b*tan(f*x + e)^2 + a)^(3/2)*a^2*tan(f*x + e)) + 1/(
(b*tan(f*x + e)^2 + a)^(3/2)*a*tan(f*x + e)^3))/f

________________________________________________________________________________________

mupad [F(-1)]  time = 0.00, size = -1, normalized size = -0.01 \[ \text {Hanged} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sin(e + f*x)^4*(a + b*tan(e + f*x)^2)^(5/2)),x)

[Out]

\text{Hanged}

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\csc ^{4}{\left (e + f x \right )}}{\left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**4/(a+b*tan(f*x+e)**2)**(5/2),x)

[Out]

Integral(csc(e + f*x)**4/(a + b*tan(e + f*x)**2)**(5/2), x)

________________________________________________________________________________________